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Abstract. On a ring threaded by a flux line moves a charged quantum particle whose rotation
is hindered by an angle-dependent potential. When the potential is rigidly rotated through
2π , the particle (in thenth eigenstate of the potential on the ring) acquires a geometric phase
γn. A general formula isγn = 2π(α + Jn), whereα is the dimensionless quantum flux and
Jn is a Schr̈odinger current associated with the state. Properties ofJn are obtained in terms
of the transmission coefficient round the ring.Jn vanishes when the box is impenetrable or
whenα is integer or half-integer. Energy levels form bands, withα playing the role of Bloch
pseudomomentum. For unhindered semiclassical states above the barrier, a WKB theory gives
the geometric phase and hence the (previously calculated) classical Hannay angle2H. This does
not vanish whenα is integer or half-integer, but these cases correspond to band edges where
the semiclassical states are degenerate and differ greatly from the true asymptotic states. The
theory is illustrated by the exact calculation ofJn for a model where the potential is a delta
function.

1. Introduction

One of the earliest examples of a geometric phase is that acquired by charged particles
near a line of magnetic flux8 (Aharonov and Bohm 1959). Previously (Berry 1984b), I
considered this in terms of a model where the chargeq is in an eigenstate confined in a
box that is transported round the flux line (see also de Polavieja and Sjöqvist 1997). The
geometric phase is the same as the Aharonov–Bohm (AB) phase

γAB = 2πα where α ≡ q8

h
(1)

is the dimensionless flux. This phase is independent of the quantum state of the particle in
the box, and so the Hannay angle2H—its classical counterpart (Hannay 1985), given by
the derivative of the phase with respect to quantum number (Berry 1985)—must be zero.
It is possible to regard this version of the AB effect as a rotated rotator in the presence of
a flux line, where the rotator is hindered by the confining potential of the box. But2H has
been calculated for a class of rotated rotators (Berry and Morgan 1996), and it is not zero
(and moreover2H is independent of8).

My purpose here is to resolve this discordance, by calculating the geometric phaseγ

exactly for a class of penetrable boxes, and examining several limits. It will emerge that (1)
is an approximation, valid when the box is impenetrable—either because its potential walls
are high or because the confined particles are nearly classical. In the opposite extreme,
when the box is completely penetrable (that is, the particle can move unhindered round the
flux line—because it is nearly classical and unconfined by potential barriers),2H is equal
to the previously calculated nonzero value, providedα is not an integer or a half-integer.
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In these exceptional cases,2H = 0, that is, not the previously calculated value; this will be
explained as a clash between the semiclassical limit and the long-time limit.

Only the motion round the flux line is important, so the particle can be restricted to a
ring (0 6 θ < 2π) on which there is a potentialV (θ −X(t)) that describes the box.X is
the parameter describing the angular location of the box. IfV has high walls, the box is
impenetrable. Geometric phases are generated by transporting the box, that is forcingX to
increase from 0 to 2π . The quantum eigenstates are determined by

Hψn =
[

h̄2

2MR2
(−i∂θ − α)2+ V (θ −X)

]
ψn = Enψn (2)

whereM is the mass of the particle andR the radius of the ring. These states are periodic
(that is, single-valued on the ring) and, for this simple type of transport, are obtained for
differentX simply by translation:

ψn = ψn (θ −X) = ψn (θ + 2π −X) . (3)

Thus the geometric phase is

γn = −Im
∮
〈ψn | dψn〉

= −Im

2π∫
0

dX

2π∫
0

dθψ∗n (θ −X) ∂Xψn (θ −X)

= +2π Im

2π∫
0

dθψ∗n (θ) ∂θψn (θ) . (4)

2. Geometric phase calculation

We transfer the flux in (2) from the operator to the boundary condition by writing (for
X = 0)

ψn (θ) = exp(iαθ) χn (θ) (5)

so that(
h̄2

2MR2
∂2
θ + En − V (θ)

)
χn = 0 χn (θ + 2π) exp(2π iα) = χn (θ) . (6)

Thus (2) is reduced to a Bloch problem, with pseudomomentum 2πα. The geometric phase
(4) becomes

γn = 2π (α + Jn) (7)

whereJn is the current of the Hamiltonian (6), namely

Jn = 2π Imχ∗n ∂θχn (8)

which is conserved according to (6) and so can be evaluated at anyθ . Only if Jn vanishes
doesγn take its AB value (1). From (6) it follows that

Jn (α + 1) = Jn (α) Jn (−α) = −Jn (α) . (9)
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Figure 1. Superposed transmitted and reflected waves, and their conjugates, constituting the
wavefunction on the ring.

To calculateJ , it is convenient to chooseV = 0 nearθ = 0, and writeχ in terms of
transmission and reflection coefficientst andr (figure 1), both dependent on energy E. This
can be accomplished by writing

χ (θ) = Aχ+ (θ)+ Bχ∗+ (θ) where

χ+ (θ) = exp(ikθ)+ r exp(−ikθ) (θ ≈ 0)
χ+ (θ) = t exp(ikθ) (θ ≈ 2π)

}
(10)

where we have introduced the notation

k ≡ R

h̄

√
2ME. (11)

Thus (8) gives the current as

J = 2π |t |2 k (|A|2− |B|2) . (12)

Application of the boundary condition in (6) gives

A+ r∗B = tA exp{2π i (k + α)}
rA+ B = t∗B exp{2π i (−k + α)} (13)

whence

B

A
= t exp{2π i (k + α)} − 1

r∗
A

B
= t∗ exp{2π i (−k + α)} − 1

r
. (14)

Compatibility leads to a quantization condition, namely (restoring the energy dependence)

cos{2π kn + µ (En)} = |t (En)| cos{2πα} (15)

whereµ is the phase of the transmission coefficient:

t = |t | exp(i µ) . (16)

This describes the familiar structure (figure 2) of narrow tight-binding bands when|t | � 1,
near 2πk + µ = (n + 1/2)π , and nearly-free bands when|t | ≈ 1, with narrow gaps near
2πk + µ = nπ .

Some algebra based on (13) and (14) gives
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Figure 2. Quantization condition for bands (bold), indicating signs of currentJ , drawn for
sinα > 0.

∣∣∣∣BA
∣∣∣∣2 = 1+ 2 |t |2

|r|2 sin2 (2πα)+ 2 |t |
|r| sin(2πα) sin(2πk + µ)∣∣∣∣AB

∣∣∣∣2 = 1+ 2 |t |2
|r|2 sin2 (2πα)− 2 |t |

|r| sin(2πα) sin(2πk + µ) . (17)

Several conclusions follow from these equations. First,J vanishes ifα is an integer or half-
integer (corresponding to band edges), since then (cf. 12)|A| = |B| and the wavefunctions
χ can be chosen to be real (for an explanation of the half-integer case in terms of ’false
time-reversal symmetry-breaking’, see Robnik and Berry 1986). Second,J also vanishes
when the box is impenetrable, that is in the classical limit whereE is below the barrier top
and |t | ≈ 0, since then again|A| = |B|. In these cases, the geometric phase is simplyγAB,
given by (1). Third, the sign ofJ depends on the sign of sin(2πα) sin(2π k + µ). When
this quantity is positive,|B| > |A| andJ < 0; when it is negative,|A| > |B| andJ > 0.
Thus for given fluxα the sign ofJ alternates between bands (figure 2), and ifα is replaced
by −α all the signs reverse.

3. Semiclassical limit

For energies above the barrier, and small ¯h, the approximate solutions of (6) are given by
the WKB method (Berry and Mount 1972) as the reflectionless distorted plane waves

χ (θ) ≈ χsc(θ) = N
exp

{
± (i/h̄) R√2M

θ∫
0

dφ
√
E − V (φ)

}
[E − V (θ)]1/4 (18)

where the normalization constant is

N2 =


2π∫
0

dθ√
E − V (θ)


−1

. (19)

The continuation requirement (6) yields the approximate quantization rule

I (En) = h̄ (n∓ α) (n = . . .− 2,−1, 0, 1, 2, 3 . . .) (20)
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where the action is defined by

I (E) = R

2π

√
2M

2π∫
0

dθ
√
E − V (θ). (21)

The angular frequencyω(E) of the classical motion is related toN by

1

ω (E)
= ∂EI = R

2πN2

√
M

2
. (22)

Now (7) and (8) give the geometric phase as

γsc,n = 2π

[
α ± MR

2ω (En)

h̄

]
. (23)

The+ and− correspond to the two solutions (18). Here the phase arises entirely from the
normalization condition. The Hannay angle is

2H = −∂nγsc,n = −h̄∂I γsc,n = ∓2πMR2∂Iω (E (I)) . (24)

This is exactly the result previously calculated classically (Berry and Morgan 1996) (apart
from a physically insignificant term 2π arising from the definition of the origin of the angle
variable, with the extra lower sign corresponding to particles circulating negatively).

As expected,2H is independent of the fluxα (because this is classically unobservable),
but the fact that2H is not zero gives rise to a discordance with the results of the last section,
according to whichJn, and therefore also2H, must vanish whenα is integer (γn = 0) or half-
integer (γn = π ). In precisely these cases, however, the solutions (18) do not correspond to
eigenstates, because the semiclassical quantization condition (20) predicts—wrongly—that
the + and− states are degenerate; they are not modes but ’quasimodes’ (Arnold 1972,
Berry 1978). The semiclassically weak above-barrier reflection generates an exponentially
small splitting between the levels (20). In this situation we must represent the semiclassical
states more accurately by a linear combination of the solutions (18), namely

χ (θ) ≈ N

[E − V (θ)]1/4 ×
C exp

 i

h̄
R
√

2M

θ∫
0

dφ
√
E − V (φ)


+D exp

− i

h̄
R
√

2M

θ∫
0

dφ
√
E − V (φ)


 . (25)

C andD are proportional toA andB in (10) apart from phase factors, so that|C/D| =
|A/B|. (C andD are not quite constant, but this does not affect the results now to be
obtained.)

Now we can repeat the argument leading to (23) (neglecting a semiclassically small
term arising from interference oscillations in the normalization integral) and thereby obtain
the corrected formula

γsc,n = 2π

[
α ± MR

2ω (En)

h̄

(
1− |B/A|2
1+ |B/A|2

)]
. (26)

For the ratios of coefficients we can use (17), in which|r| is exponentially small (in ¯h), |t |
is exponentially close to unity, and the phaseµ of t is given by comparing (18) with (10):

2πk + µ = 2π

h̄
I (E) . (27)
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Unlessα is integer or half-integer,|A/B| is either much greater or much less than unity
(this follows from (17)). Then (26) reduces to the previous formula (23). Exponentially
close to a band edge, however,|A/B| is close to unity and (23) and (26) differ. At a band
edge,|A/B| = 1 and the corrected semiclassical geometric phase is a multiple ofπ (as is
the exact geometric phase).

This discordance between semiclassical and exact geometric phases near a band edge
persists as ¯h → 0. It can be interpreted in terms of the familiar clash between the
semiclassical and long-time limits (for other examples, see Berry 1984a, Robbins and Berry
1992). The approximate solutions (18) differ radically from the true eigenstates near band
edges, but in view of the small energy splitting this difference becomes apparent only after
times that are exponentially long in ¯h. Then, a state initially given by (18) with the positive
sign would, being nonstationary, transform by above-barrier tunnelling into the state with the
negative sign, that is, the particles would reverse their direction of circulation. Therefore, if
the adiabatic transport of the potential is carried out in a time shorter than O(exp(1/h̄))—
but still long in comparison with the orbital period 2π/ω—the formula (23) would give the
geometric phase correctly for the states (18), even near band edges.

4. Exactly-solvable model

Let the potential be

V (θ) = h̄2

2MR2
Kδ (θ) . (28)

If K > 0, this represents a wide potential well with a thin barrier, and ifK < 0 the barrier
is wide and the well is narrow. The coefficientsr and t are determined by continuity ofχ
across theδ spike, which givesr+1= t , together with the discontinuity of∂θχ that results
from integrating (6) across the spike, namely

lim
ε→0

(∂θχ (ε)− ∂θχ (−ε)) = Kχ (0) . (29)

Thus follows

t = 1

1−K/2ik
r = K/2ik

1−K/2ik
. (30)

From (15) follows the quantization condition

cos(2πα) = cos(2πk)+ K

2k
sin(2πk) . (31)

As α varies from 0 to 1/2 this generates the bands, as illustrated in figure 3. For positiveK,
all the bands have positive energy (for this non-smooth potential, the gap widths decrease
asymptotically asK/k rather than exponentially). For negativeK there is also one band
with negative energy. Withk = iσ , this is determined by

cos(2πα) = cosh(2πσ)− |K|
2σ

sinh(2πσ) . (32)

If −2/π < K < 0 the negative-energy band passes thoughE = 0 (at flux cos(2πα) =
1− π |K|). For large negativeK, the negative-energy band is very narrow (tight-binding
limit), and given approximately by

σ = |K|
2

[
1+ 2 exp(−π |K|) cos(2πα)

]
. (33)
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Figure 3. Energy bands generated by (31) for the potential (28) withK = 1.

To calculate the geometric phase for this model, we use (7) and (12). The currentJ

can be determined by calculating the normalization integral using (10), and the fact that for
this model the solutionχ+ written there forθ ≈ 2π holds in the range 0< θ 6 2π . It
follows that

J = k
(
1− |B/A|2)(

1+ |B/A|2+ (sin(2πk) /πk)Re((Bt∗/At) exp(−2π ik))
) . (34)

A convenient expression forBt∗/At can be obtained by adding the two equations (13) and
using 1+ r = t :

Bt∗

At
= exp(2π ik)

sin{π (k + α)}
sin{π (k − α)} . (35)

(Showing this to be equivalent to (14) is a tricky exercise, using 1+ r = t and the unitarity
condition r∗t + rt∗ = 0, which implies cosµ = |t |.) ThusJ can be found in terms ofα
andk, with k one of the solutions of (31). As expected,|B/A| = 1, and soJ = 0, whenα
is integer or half-integer.

Alternatively, an explicit formula can be found by using (31) to eliminateα, thereby
obtainingJ as a function of energy (proportional tok2) and the strengthK of the potential.
Some algebra gives

J (k,K) = k
Re
[√

1− (cos(2πk)+ (K/2k) sin(2πk))2
]

sin(2πk)− (K/2k) cos(2πk)+ (K/8πk2
)

sin(4πk)
. (36)

As k→∞ and not very close to the gaps,J →±k, which is the free-particle limit. In this
situation, the geometric phase (7) differs greatly fromγAB. The formula (36) also works for
negative energies (k = iσ ). In the tight-binding limit (K large and negative), the current is
exponentially small and varies parabolically across the band:

J (iσ,− |K|) ≈ 2πK2 exp(−2π |K|)
√

1−
(
σ

|K| −
1

2

)2

exp[2π |K|]. (37)
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Figure 4. DeviationJ of the geometric phase (7) fromγAB, for the potential (28) withK = −1,
calculated from (36).

This exemplifies the situation I envisaged before (Berry 1984b), where the box is
impenetrable andγ = γAB. Figure 4 illustrates the transition ofJ between the tight-binding
(AB geometric phase) and nearly-free regimes.
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